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Following the recent theoretical proposal and experiment on quantum spin Hall effect in HgTe/CdTe quan-
tum wells, we consider a single magnetic impurity localized in the bulk of the system, which we treat as a
classical spin. It is shown that there are always localized excited states in the bulk energy gap for arbitrarily
strong impurity strength in the inverted region, while the localized excited states vanish for very strong
impurity strength in the normal region. Similar conclusion also applies to three-dimensional topological insu-
lators. This distinct difference serves as another criterion for the conventional and topological insulating phases
when the time-reversal symmetry is broken, and can be easily experimentally observed through the scanning
tunnel microscope and/or angle-resolved photoelectron spectroscopy experiments.
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The quantum spin Hall �QSH� effect is a state of matter
with topological properties distinct from those of conven-
tional insulators.1–3 The first proposal of experimental real-
ization of this effect is given in the work by Bernevig et al.3

where they consider the HgTe/CdTe semiconductor quantum
wells �QWs�, and show that when the thickness of the QW is
varied, the electronic states change from a normal to an in-
verted type at a critical thickness dc. This transition is a
topological quantum phase transition between a conventional
insulating phase and a phase exhibiting the QSH effect with
a single pair of helical edge states. This phase transition can
be understood by the relativistic Dirac model in �2+1� di-
mensions, which mimic the electronic states near the � point.
At the quantum phase transition point, d=dc, the mass term
in the Dirac equation changes sign, leading to two distinct
U�1�-spin and Z2 topological numbers on either side of the
transition. Recently, the QSH phase in HgTe/CdTe QWs has
been observed in the transport experiments,4 which confirms
the theoretical predictions of Bernevig et al.3

Following this pioneer work, there emerge various discus-
sions on the properties of the topological insulating phase in
both two- and three-dimensional �2D, 3D� systems,5–8 how-
ever, most of these are considered within the framework of
the preservation of the time-reversal symmetry �TRS�,
among which, we notice that two of them show that the
properties of this topological system can also be manifested
by breaking the TRS on the surface through the so-called
topological magnetoelectric effect9 or local charge and spin
density of states.10 In the meanwhile, we notice that the sys-
tem with Mn doped impurities in the bulk of the HgTe QWs
has been discussed in Ref. 11, where by breaking the TRS in
the bulk, the quantum anomalous Hall effect is realized. On
the other hand, it is well-known that a single magnetic im-
purity in a superconductor breaks the TRS and induces low
energy bound states in the superconducting gap.12,13

Motivated along this line, we discuss the presence of a
single magnetic impurity located in the 2D bulk of the HgTe/
CdTe QWs, which we treat as a classical spin in both normal
and inverted regimes. Similar to the discussions in BCS su-
perconductors by Shiba in 1968,13 we show that in the in-
verted regime of the HgTe/CdTe QWs, there are always lo-
calized excited states �LES� in the bulk energy gap for

arbitrarily strong impurity strength, while in normal regime,
the LES vanish into the bulk for very strong impurity
strength. This distinct difference of the response to the single
magnetic impurity in bulk serves as another criteria for the
conventional and topological insulating phases when the
TRS is broken, and can be experimentally observed through
the scanning tunnel microscope �STM� and/or angle-resolved
photoelectron spectroscopy �ARPES� measurements.

The starting point of this paper is the effective four-
band model3 H0�k��=�k�0�0+Mk�0�3+Akx�3�1+Aky�0�2 in
HgTe/CdTe QWs around the � point in the basis of �E1,+�,
�H1,+�, �E1,−�, and �H1,−�, plus that of a short-range single
magnetic impurity located at the origin. The exchange inter-
action in Mn doped HgTe QWs has been discussed in several
literatures,11,14 where it is established that the s-band and
p-band electrons have different sp-d exchange coupling
strength. To focus on the physical picture, we first consider
the isotropic case where Js=Jp=J, then the full Hamiltonian
takes the form

H = �
k

ck
†H0�k��ck +

J

2�
kk�

ck
†�S� · �� ��0ck�. �1�

Here S� is the spin vector of the magnetic impurity, and the
Pauli matrix �i’s act on spin space while �i’s act on the two
electric sub-bands space, �0 and �0 are both 2 by 2 unit
matrices. We will show later that our result is robust for a
general form of the exchange coupling. The full Green’s
function �GF� of Hamiltonian �1� is obtained through the
equation of motion formulation13 as

Gkk���� = Gk
0����kk� + Gk

0���t���Gk�
0 ��� , �2�

where the t matrix takes the form

t��� =
� JS

2
�2

F��� +
J

2
�S� · �� ��0

1 − � JS

2
F���	2 , �3�

with S2=Sx
2+Sy

2+Sz
2. In the above, we have introduced an F

function as
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F��� =
1

N
�

k

Gk
0��� = diag�FeFhFeFh� , �4�

where the diagonal elements are

Fe�h���� =
1

N
�

k

� − �k + �− �Mk

Dk
. �5�

In the tight-binding model, �k=C−2D�2−cos kx−cos ky�,
Mk=M −2B�2−cos kx−cos ky�, and Dk= ��−�k−Mk���
−�k+Mk�−A2�sin2 kx+sin2 ky�, where M , A , B , C , D are
material parameters introduced in the effective four-band
model in Ref. 3. Then the eigenenergies for the excited states
are obtained by finding the poles of the GF in the bulk en-
ergy gap as

JS

2
Fe�h���� = � 1, �6�

which consists of four equations.
To characterize the momentum integration in both normal

and inverted regimes, we notice that each diagonal block in
H0�k�� describes a quantum anomalous Hall system,15 with
the two forming a time-reversal conjugate pair. Using the
result obtained by Qi et al.,15 the topological behavior of this
system is totally governed by two key parameters. In our
case the correspondences are e=− M

2B +2, which is related to
the mass term in the �2+1�-D Dirac model, and c=− 2B

A
which determines the sign of the Chern number. Therefore in
the inverted regime we have �e��2 corresponding to d	dc,
otherwise it is topological trivial corresponding to a normal
insulating phase. Furthermore, we set �k=0 without loss of
generality to obtain a particle-hole symmetric system, as we
know that the quadratic kinetic term has no contribution to
the topology of this system.15

We therefore rewrite Eq. �5� in terms of e and c, the result
of which with � in the bulk energy gap at several values of
e parameter is shown in Fig. 1, where the topological non-
trivial regime with �e��2 is given in the left column, while
the trivial regime is plotted in the right column with �e�	2.
In each panel, the contribution from the electron sub-band,
Fe���, is shown in red and that from the hole sub-band,
Fh���, is shown in cyan. It is clear to see that the resonant
condition, Eq. �6�, is always satisfied for any given impurity
strength J in the inverted regime, and there are four LES in
the bulk gap, two come from the electron sub-band and two
from the hole sub-band. Moreover, the stronger the impurity
strength is, the nearer the LES are to the middle of the bulk
gap, and no matter how strong the impurity strength is, there
are always LES in the bulk gap which appear as peaks in the
density of states �DOS�.

In contrast, for the normal regime, we see that the reso-
nant condition is not always satisfied for any impurity
strength. For weak impurity strength, there could exist two
LES near the gap edge, however, as we increase the impurity
strength, these LES merge quickly into the bulk and vanish
finally. That is, the peaks in the DOS in the bulk gap are not
stable against the strong impurity strength for this case. This
distinct difference of the response to the single magnetic im-
purity in bulk serves as another criteria for the conventional

and topological insulating phases when the TRS is broken.
Note that this result is robust to the explicit form of the
exchange interaction. For the Mn doped HgTe QWs,11,14 we
consider a form of exchange interaction, Jz

s�p�Sz�z
+J


s�p��Sx�x+Sy�y�, in electron and hole bands separately. It
turns out that the only difference with the isotropic model is
to replace JS in Eq. �6� by ��Jz

s,p�2Sz
2+ �J


s,p�2S

2, and in the

inverted region there are still four persistent LES in the gap,
which never merge into the bulk.

To justify the above results obtained from t matrix
method, we directly diagonalize the Hamiltonian �1� on a
square lattice in both inverted and normal regimes by taking
e=0.5 and 3.5, for example. The obtained energy spectrum is
plotted versus impurity strength in Fig. 2. The four persistent
LES �red lines� in the bulk-energy gap are clearly shown for
the nontrivial case where we see that they approach the
middle of the gap as J increases and do not vanish. While in
the trivial regime, there are only two LES for small J and
merge into the bulk for large J. This result is in perfect agree-
ment with the above analysis through GF discussions.

By using the real parameters of the HgTe/CdTe QWs sys-
tem given in Ref. 3, we plot the F function at the quantum
well width d=58 Å and d=70 Å, which are shown in Fig.
3. We see that for d	dc where the QSH effect is predicted,

FIG. 1. �Color online� F function versus � in the bulk-energy
gap with several values of e and c2=1. The topological nontrivial
regime with �e��2 is shown in the left column, while the topologi-
cal trivial regime with �e�	2 is shown in the right column of the
figure. Fe�e ,�� is plotted as red lines while Fh�e ,�� is plotted as
cyan �gray� lines. The dotted lines are guidelines for the eyes to
indicate the boundary values of the F functions.
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there are always LES in the bulk energy gap for arbitrarily
strong impurity strength; while for d�dc, which is a normal
insulator, the LES vanish for strong impurity strength.

Considering that in real materials there is always a finite
concentration of magnetic impurities, under which the local-
ized excited states grow into impurity band, we estimate the
critical concentration of magnetic impurities 1

�sM
in the topo-

logical nontrivial regime as a function of impurity strength
�1−
2�2 / �1+
2�2, at which the impurity band cannot be dis-
tinguished from the continuum, and the result is shown in
Fig. 4. Here we have denoted 
= JS

2 �NF as the effective im-
purity strength and 1

�sM
=ni

JS
M




�1+
2�2 as the effective concen-
tration. However we suggest that experimentally the actual
concentration should be much lower than the critical values,
so that not only its influence on the exchange coupling J is
negligible,14 but also the impurities can be considered iso-
lated and their coupling, such as RKKY interactions, can be
ignored. Furthermore, we speculate that our results should be
still valid even within a complete quantum treatment of the
magnetic impurity.16

Interestingly, the existence of LES in the bulk energy gap
of a topological insulator is not special in two dimensions,
but is also true for 3D strong topological insulators �STI�. As
an example, we consider the strained HgTe which is believed
to be a STI.9,17 The effect of magnetic impurities on the
surface states of strained HgTe has been discussed by one of
the authors,10 here we focus on its effect in bulk. The model
Hamiltonian describing strained HgTe with time-reversal as
well as inversion symmetries takes the form9,17

H3D�k�� = Mk�
1 + A�kx�

5 + A�ky�
2 + A
kz�

3, �7�

where Mk=M0−M1�kx
2+ky

2�−M2kz
2, and the representation

for Gamma matrices is chosen in such a way that they are
invariant under the joint transformations of inversion and
time-reversal symmetries.18 Two features are worth noticing

FIG. 2. �Color online� Energy spectrum obtained by direct di-
agonalization of Hamiltonian �1� with �k=0 as a function of impu-
rity strength in both �a� inverted and �b� normal regimes. The local-
ized states are shown in red �intersecting lines in middle�.

FIG. 3. �Color online� F function versus � with � in the bulk
energy gap. The F functions are calculated numerically from Eq. �5�
with the parameters taken from Ref. 3 for HgTe/CdTe QW at d
=58 Å and d=70 Å. Fe��� are shown as red lines while Fh��� are
shown as cyan lines. Inset: the enlarged structures for the nontrivial
regime.

FIG. 4. Effective impurity concentration 1
�sM

as a function of
effective impurity strength �1−
2�2 / �1+
2�2. The shaded area indi-
cates the range of the impurity concentration where the impurity
band and the continuum are separated.
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about this model Hamiltonian. First, by setting A
 =0, Eq. �7�
recovers the 2D HgTe/CdTe QW model. As we have dis-
cussed in the above, there are always LES in the inverted
regime for arbitrarily strong impurity strength. Second, by
comparing Eq. �7� with the Kane model19 in the basis of
�E , 1

2 �, �LH ,− 1
2 �, �E ,− 1

2 �, �LH , 1
2 �, we observe that they have

exactly the same form. Therefore the matrix form for Kondo-
like sp-d exchange term,11,14,19 Hex�r��=−�mJ�r�−R� m�S�m ·�� , in
the same basis can be similarly extracted as

Hex =�
− 
sez 0 − 
se− 0

0
1

3

pez 0 −

2

3

pe+

− 
se+ 0 
sez 0

0 −
2

3

pe− 0 −

1

3

pez


 , �8�

where 
s=yN0Js�S�, 
p=yN0Jp�S�,14 and e� is the unit vector
along the direction of impurity spin.

Following the methods developed by Fu and co-workers
on 3D topological insulators with inversion symmetries,7,20

the STI phase characterized by an odd number of Dirac
points �kx ,ky� in the 2D surface states of Hamiltonian �7� can
be analyzed through two parameters r=M2 /M1 and r1
=M0 /4M1. Though we wouldn’t elaborate the results in gen-
eral, some specific examples are listed below. On a square
lattice, for r=1.5, there is one Dirac point at �0,0� for r1
=0.75; three Dirac points at �0,0�, �0,�� and �� ,0� for r1
=1.25; the three Dirac points then move to �0,��, �� ,0�, and
�� ,�� for r1=2.25; while for r1=3 there is only one Dirac
point again at �� ,��. For even larger r1 the system evolves
out of the STI phase.

Using the same formulation,13 the full GF for the system
H=�kck

†H3D�k��ck+�kk�ck
†Hexck� is obtained by finding the t

matrix as

t3D��� =
Hex

1 − HexF���
, �9�

where again the results in Eqs. �4� and �5� are recovered
��k=0 automatically here since there are no kinetic terms in
the Dirac Hamiltonian �7�� with Mk=M0−2M1�2−cos kx

−cos ky�−2M2�1−cos kz� and Dk=�2− �Mk
2+2A�

2 �2
−cos kx−cos ky�+2A


2�1−cos kz�� in the 3D case. The reso-
nant conditions for LES are obtained similarly by finding the
poles of the full GF in the bulk energy gap as


sFe��� = � 1,

p

�4 − 3ez
2

3
Fh��� = � 1. �10�

By numerically plotting Fe�h� as a function of � in the bulk
energy gap, similar behavior as shown in Fig. 1 is found,
respectively, for STI and non-STI phases using the values of
r and r1 illustrated above. We see that the same conclusion
applies to 3D topological insulators. In the STI phase there
are always LES in the bulk energy gap for arbitrary exchange
interaction strength, while when out of STI phase, the LES
exist only for very weak exchange interaction strength.
Therefore we believe that the existence of nonvanishing LES
in the bulk energy gap for arbitrary impurity strength plays
the role of a general characterization for topological insula-
tors.

Experimentally we suggest to detect this effect in the re-
cently achieved HgTe/CdTe QWs3,4 by doping a small con-
centration of Mn+2 ions in bulk. Since the LES evolve with
the combination of exchange coupling strength and the mag-
netic moments �at the mean-field level�, though it is hard to
adjust the impurity exchange coupling strength, it may pos-
sible to tune the Mn moments by a small magnetic field.11,14

When the Mn moments are larger than some critical value,
there will be four peaks in the DOS spectrum in STM mea-
surements for the QW width d	dc, which persist for even
larger polarization. When d�dc, the peaks in the DOS spec-
trum will be broadened and vanish as the increasing in the
polarization. However, for 3D STI systems with impurities
doped deep in bulk, ARPES measurements will be more ap-
propriate. We suggest to use this distinct signal to differenti-
ate experimentally the topological and the conventional in-
sulating phases.
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